Главная страница сайта Как заработать своим сайтом
С чего начать зарабатывать на сайте Заработок на контекстной рекламе
Как создать электронный кошелек Статьи о заработоке в Интернете

 

Если заданы любые четыре из пяти входных данных, калькулятор позволяет вычислить пятую переменную. Это можно прошшюстрировать несколькими примерами.

Пример 10.3. Вычисление стоимости облигации с помощью финансового калькулятора

Рассмотрим еще раз задачу доходности при погашении, которую мы только что решили. Введем следующие данные (в любой последовательности).

п 60 Срок погашения облигации — 30 лет, поэтому такая облигация пред-

полагает 60 полугодичных выплат.

PMT 40 Каждая полугодичная купонная выплата равняется $40.

PV (-)1276,76 Облигацию можно купить за 1276,76 долларов; в некоторых калькуляторах это число нужно вводить в виде отрицательного числа, поскольку оно представляет собой расход денег.

FV 1 000 В момент погашения этой облигации она обеспечивает одноразовый

денежный поток величиной в тысячу долларов.

Если заданы такие входные данные, можно воспользоваться финансовым калькулятором и вычислить процентную ставку, при которой PV, составляющая 1276,76 долларов, фактически равняется приведенной стоимости 60 выплат (по 540 каждая) плюс одноразовая выплата 51000 в момент погашения облигации. Чтобы вычислить процентную ставку, в большинстве калькуляторов сначала нужно нажать клавишу "compute" ("вычислить") (обычно помеченную как COMP или CPT)1 а затем ввести i. Если вы выполните именно такую последовательность действий, то окажется, что \— 3, или 3% за полгода, как было показано выше. (Обратите внимание, что поскольку денежные потоки выплачиваются с полугодовой периодичностью, вычисленная нами процентная ставка является ставкой за полугодичный период времени.)

С помощью финансового калькулятора можно также находить цену облигаций, если задана доходность при погашении. Например, в примере 10.2 было показано, что цена облигации составит 810,71 доллара, если доходность при погашении равняется 5% за полгода. В этом можно убедиться, введя в свой калькулятор следующие исходные данные:

n =60:i=5;FV=1000;PMT = 40,

вычислив затем PV. (Вычисленное значение PV равняется 810,71.) Еще раз подчеркнем, что ваш калькулятор может выдать результат в виде отрицательного числа: -810,71.

Текущая доходность (current yield)

Величина годовых купонных платежей, деленная на цену облигации.

Доходность при погашении отличается от текущей доходности (current yield) облигации, которая равняется величине годовой купонной выплаты по данной облигации, деленной на цену облигации. Например, в случае 30-летней облигации с 8°о-ной купонной ставкой, которая в настоящее время продается по цене 1276,76 долларов, текущая доходность составит SSO7Sl 276.76 = 0,0627, или 6.27% за год. В то же время вспомним, что эффективная годовая доходность при погашении равняется 6,09%. Для этой облигации, которая продается с наценкой сверх своей номинальной стоимости (т.е. за S1276, а не S1000), купонная ставка (8%) превышает текущую доходность (6,27%), которая, в свою очередь, превышает доходность при погашении (6,09%). Купонная ставка превы-

 

 

Вернуться в меню книги (стр. 401-500)

 

На правах рекламы

Здесь могла бы быть Ваша реклама, тематичная
вопросу заработка на сайте. Пишите нам...

 

Copyright © 2008-2012 MoyDohod.Ru

Использование материалов сайта возможно при условии указания активной ссылки
Как заработать на сайте